Saliency for image understanding

and manipulation

Speaker: Ming-Ming Cheng
Nankai University
http://mmcheng.net/
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My involvement to the problem

 Saliency estimation is key to many applications
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Shrinkability Maps for Content-Aware Video Resizing, CGF 2008.
A Shape-Preserving Approach to Image Resizing, CGF 2009.
Sketch2Photo: internet image montage, ACM TOG 2009.
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Predict fixation = detect salient object

* Fixation prediction
* Predicting saliency points of human eye movement

[ Almodel of saliency-based visual attention for rapid scene analysis. PAMI 1998, Itti et
al.

[ Saliency detection: A spectral residual approach. CVPR 2007, Hou et. al.
@ Graph-based visual saliency. NIPS, Harel et. al.

[ Quantitative analysis of human-model agreement in visual saliency modeling: A
comparative study, IEEE TIP 2012, Borji et. al.
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Predict fixation = detect salient object

* Eye tracker
* Cognitive psychology, neurobiology, etc.
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Predict fixation =2 detect salient object

 Saliency detection as binary segmentation

(a) MSRAT0K (b) ECSSD

Learning to detect a salient object. CVPR 2007, Liu et. al.
Frequency-tuned salient region detection, CVPR 2009, Achanta et. al.
Global contrast based salient region detection, CVPR 2011, Cheng et. al.
Salient object detection: a benchmark, IEEE TIP 2015, Ali et. al.
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Salient object detection

* How to define salient objects?

* Match the human annotators’ behavior when they have been
asked to pick a salient object in an image.
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B GIobIaI contrast based salient region detection, IEEE TPAMI 2015 (CVPR 2011), Cheng
et. al.
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Salient object detection

* High consistency among labelers.

PASCAL-S dataset

@ The Secrets of Salient Object Segmentation, CVPR 2014, Li et. al.
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Growing interest

The Second Wave

O Salient Object Detection Model 2007-Present]

O Fixation Prediction Model
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[ Salient object detection: a survey, arXiv 2014, Ali et. al.
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Saliency detection
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Region contrast (RC)
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Region contrast by sparse histogram comparison.

@ Global Contrast based Salient Region detection. IEEE TPAMI 2015 (CVPR 2011),
Cheng et al.
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Experimental results
e Dataset: MSRA1000 [Achanta09]

* Precision vs. recall
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What makes an object salient?

 Contrast

Input imagg__:__,..-—-“‘

e Spatial distribution -

( Linear fittering |

—/l—\

° F ocusness colorsf:,,...-—--""’ mtensuty onentatlons
. = il Sl
B ac kg roun d ness ( Center-surround differences and normalization )
. . I I I
e Center bais / prior < Fatw ——= mp =
‘T'l (12 maps) (6 maps) ‘T'l (24 maps) 'T'I
o et C. ( Across-scale combinations and normalization ]
| — Conspicuity _~ | —  maps :If

|
L

[ Linear combinations |

: |
Saliency map _—— e
|

(" Winnerake-all ] | Inhibition
| of retum

[
Attended location

@ A Model of Saliency-Based Visual Attention for Rapid Scene Analysis, IEEE TPAMI
1998, Itti et al.

@ Salient object detection: a survey, arXiv 2014, Ali et. al.
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A Shape-Preserving Approach to Image Resizing, CGF 2009.
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lmage mosaic

@ Saliency for image Manipulation, The Visual Computer 2013, Margolin et al.
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SaliencyCut

Enables automatic initialization provided by salient
object detection.
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Application requirements

* |s salient object detection for ‘simple’ images useful?

Dog Jump
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2 SalientShape: Group Saliency in Image Collections, The Visual Computer 2014.
Cheng et. al.
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Application requirements

* |llustration of learned appearance models
* Accords with our understanding of these categories
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Applications

sunset beach
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[ Sketch2Photo: internet image montage, ACM TOG 2009. Chen et. al.
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Image Collage

= Arcimboldo-like Collage Using Internet Images, ACM TOG 2011. Huang et. al.
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View selection

= Web-image driven best views of 3d shapes, The Visual Computer 2012. Liu et al.
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Colorization

rooSter

@ Semantic Colorization with Internet Images, ACM TOG 2011. Chia et al. J
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Unsupervised object discovery

2 Unsupervised Object Discovery via Saliency-Guided Multiple Class Learning, IEEE
CVPR 2012. Zhu et al.
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Weakly supervised sematic segmentatio

* Example of simple images in Flickr and saliency maps

8/10/2016 [ECCV Tutorial] New directions in saliency research: Developments in architectures, datasets, and evaluation



Weakly supervised sematic segmentatio
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STC: A Simple to Complex Framework for Weakly-supervised Semantic
Segmentation, Wei et al., arXiv 2015.
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Applications: what we learnt?

Don’t ask what segments can do
for you, ask what you can do for
the segments.

— Jitendra Malik
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Salient Object Subitizing

* Predicting the number of salient objects
* |s it possible without any object localization process?

* How fast can you tell the number of prominent objects in
each of these images?

* Are we able to do it using holistic cues only?

@ Salient Object Subitizing, IEEE CVPR 2015, Zhang et al.
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Joint Detection and Existence Prediction

B :Jl_oint S?Ii?nt Object Detection and Existence Prediction, Computational Visual Media,
iang et al.
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How about complicated images?
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Objectness proposals
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Motivation: What is an object?

8/10/2016 [ECCV Tutorial] New directions in saliency research: Developments in architectures, datasets, and evaluation



Motivation: What is an object?

* An objectness measure

* Avalue to reflects how likely an image window covers an
object of any category.

e What’s the benefits?

* Improve computational efficiency, reduce the search space

* Allowing the usage of strong classifiers during testing,
improve accuracy

@ Measuring the objectness of image window, IEEE TPAMI 2012, Alexe et. al.
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A feature integration approach

* Objectness proposal generation
* A small number (e.g. 1K) of category-independent proposals
* Expected to cover all objects in an image

@ Measuring the objectness of image windows. PAMI 2012, Alexe, et. Al. J
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Region merging & Diversification

* Region merging
* Merge two most similar regions
based on region similarity.

e Update similarities between the
new region and its neighbors.

e Diversification

E Selective Search for Object Recognition, IJCV 2013, Uijlings et. Al.
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Local & global search

* Local search
* Unsuitable for object with distinct parts

* Global search
* Initialize with foreground/background seeds
* A global optimization function for each parameter set

@ Generating object segmentation proposals using global and local search, CVPR 2014,
Rantalankila et al.
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BING method

e Our observation: a small interactive demo

* Take you pen and paper and draw an object which is current
in your mind.

 What if we resize it to a tiny fixed size?
* E.g. 8x8. Not only changing the scale, but also aspect ratio.

@ BING: Binarized Normed Gradients for Objectness Estimation at 300fp, |IEEE
CVPR 2014 (Oral), M.M. Cheng, et. al.
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BING method

* Objects are stand-alone things with well defined closed
boundaries and centers.

@ Finding pictures of objects in large collections of images. Springer Berlin
Heidelberg, 1996, Forsyth et. al.

Using stuff to find things. ECCV 2008, Heitz et. al.
Measuring the objectness of image window, IEEE TPAMI 2012, Alexe et. al.
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Experimental results of BING method
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Combining boxes and regions

(a) Input (b) Initial boxes (c) Box Alignment d)éd=0.7 €)d=03

E Improving Object Proposals with Multi-Thresholding Straddling Expansion, IEEE
CVPR 2015, Chen, et. al.
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Combining boxes and regions

* Experimental results
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@ Improving Object Proposals with Multi-Thresholding Straddling Expansion, |IEEE
CVPR 2015, Chen, et. al.
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Applications
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Rich feature hierarchies for accurate object detection and semantic segmentation,

CVPR 2014 (Oral), Girshick et al.

BING++: A Fast High Quality Object Proposal Generator at 100fps, arXiv, Zhang et
al.
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Future work in objectness proposals

* High detection rate under large loU
* Running speed

* Small number of proposals

* Exploring more applications
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Other research problems

* New research topics lies in the requirements of
applications
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Primary object auto-segmentation

@ Fast Appearance Modeling for Automatic Primary Video Object Segmentation, IEEE
TIP 2016, Yang et al.
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Finding Distractors
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@ Finding Distractors In Images, IEEE CVPR 2015, Fried et al.
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Finding Distractors

@ Finding Distractors In Images, IEEE CVPR 2015, Fried et al.
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Thanks!

Tutorial webpage:
http://saliency.mit.edu/ECCVTutorial/ECCV saliency.htm
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